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Abstract—We present a computational framework for integrat-  increasing the recommitment frequency can reduce costs and
ing a state-of-the-art numerical weather prediction (NWP)model increase the reliability of the system. However, the author
in stochastic unit commitment/energy dispatch formulatins that do not present details on the wind power forecast model and

account for wind power uncertainty. We first enhance the NWP - - . . .
model with an ensemble-based uncertainty quantification sat- uncertainty information used to support their conclusidns

egy implemented in a distributed-memory parallel computirg [10], [13], artificial neural network (ANN) models are used
architecture. We use these capabilities through an ensembl to compute forecasts and confidence intervals for the total
approach to model the uncertainty of the forecast errors. Tk aggregated power for a set of distributed wind generatdrs. T
wind power realizations are exploited through a closed-lop authors observed that forecasting the aggregated powes ten

stochastic unit commitment/energy dispatch formulation. We ¢ d th I f t b it th t
discuss computational issues arising in the implementatioof the 0 reduce the overall Torecast error because It Smoothes ou

framework. In addition, we validate the framework using real local individual variations. A problem with empirical mdiey
wind speed data obtained from a set of meteorological statis. approaches, however, is that their predictive capalslitedy

We also build a simulated power system to demonstrate the strongly on the presence of persistent trends. In additiway,

developments. neglect the presence of spatio-temporal physical phenamen
Index Terms—weather forecasting, wind, unit commitment, that can lead to time-varying correlations of the wind spgeed
energy dispatch, closed-loop. at neighboring locations. Such approaches can thus result i

inaccurate medium and long-term forecasts and over- orrunde
estimated uncertainty levels [12], [7], which in turn aff¢iee
expected cost and robustness of the UC solution.

Wind power is becoming worldwide a significant component | this work, we seek to exploit recent advances in nu-
of the power generation portfolio. In Europe, several coest merical weather prediction (NWP) models to perform UC/EP
already exhibit adoption levels in the range of 5-20% aftydies with wind power adoption. The use of physical mod-
the total annual demand. In the U.S. an adoption level gfs js desirable because consistent and accurate untgrtain
20% is expected by the year 2030 [1]. Such a large-sc@ligormation can be obtained [11]. As an example, consider
adoption resents many challenges to the operation of M missing effects of turbulence during night time, which
electrical power grid because wind power is highly intetemit \yoy|d allow one to obtain much tighter uncertainty intesval
and difficult to predict. In particular, unit commitment (YC and |ower operating costs. These physical effects cannot be
and energy dispatch (ED) operations are of great importanggtured adequately through empirical modeling techrsique
because of their strong economic impact (on the order Féﬂ On the other hand, the practical capabilites of NWP
billions of dollars per year) and increasing emissions eons. models are also limited. One of the major limiting factors is

Several UC studies analyzing the impact of increasifgeir computational complexity. For instance, performitega
adoption levels of wind power have been performed recenthssimilation every hour at a high spatial resolution is exily
In [20], a security-constrained stochastic UC formulatioqot practical. In addition, extracting uncertainty infation
that accounts for wind power volatility is presented togeth from NWP models becomes quickly intractable both from the
with an efficient Benders decomposition solution technjqusoint of view of simulation time and memory requirements.
However, the issue of constructing probability distriba8 1o give a reference, a single forecast run for a day ahead with
for the wind power is not addressed. In [18], a detaileg resolution of about km? for an area that covers most of the
closed-loop stochastic UC formulation is reported. Thévatst s state of Illinois takes about 50 hours and produces around
analyze the impact of the frequency of recommitment ofp GB of data. The question iErom an operational point of
the production, startup, and shutdown costs. They find thaéw, how suitable are the forecasting capabilities of estat-

. L _ the-art NWP modelsThis is an important question because
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particular, we are interested in analyzing computatiosgés B. Uncertainty Estimation in Wind Prediction

and to analyze the effects of wind uncertainty on UC/ED e yse an ensemble of realizations to represent uncertainty

operations. in the initial (random) wind field and propagate it througk th

We focus our attention on wind speed forecasting Wi Rr nonlinear model. The initial ensemble is obtained by
WREF. Arguably, more sophisticated hybrid methods that corgampling from an empirical distribution, a procedure simil

bine both NWP wind speed forecasts and empirical modgls the NCEP method introduced by Parrish and Derber [14],
are needed to map the resolution of NWP forecasts down 19} In the following sections we describe in more detalil
specific domain and to account for system-specific chaiigetegy,o procedures needed for generating the forecast and its
tics (e.g., power curves, orography) [11]. Unfortunateinst ncertainty. We introduced a similar approach in [21].
real-time power data of operational wind farms is confidinti 1y gpsemble Initializationn a normal operational mode,

so itis complicated to validate wind power models. We modgls " Nwp system evolves a given state from an initial time
the uncertainty of the wind speed forecasts using a sampling (o a final time . The initial state is produced from

technique that generates an ensemble of the future realiggs; simulations and reanalysis fields, that is, simulated a
tions in the targeted geographical region. The ensembies giospheric states reconciled with real observations. Bacau
obtained by using a scalable implementation on a distrdutéf the observation sparseness in the atmospheric field and
memory parallel computing. The generated ensembles ate S8R incomplete numerical representation of the atmosphere
to a stochastic UC/EP optimization problem. We validate thgnamics, the initial states are not known exactly and can be
forecast information using real wind speed data obtaineoh fr correctly represented only in a statistical sense. Thezefoe

a set of meteorological stations located in lllinois. We USgse an ensemble of initial conditions to describe the conéie
this forecast information to perform an economic analysis @, the knowledge of the initial state of the atmosphere.
the impact of increasing adoption levels of wind power on & 1he ensemble of the initial states is centered on the NARR
simulated power generation system. _ _field at the initial time, the most accurate information élalie

The paper is structured as follows_. Section I_I _pre§entsldet_aof the atmospheric state. In other words, the ensemble expec
about the WRF model and uncertainty quantification. Sectiofion is exactly the NARR solution. The second statistical
[l describes the stochastic unit commitment formulatiowl a o ment of the ensemble described by the covariance matrix
a resampling technique used to perform inference analys{g.is approximated by the sample variance or pointwise uncer-
Section IV presents numerical validation results for WRE anainty and its correlation. We assume a normal distributibn
the closed-loop UC simulations results. We close with finghe jncertainty field of the initial state, a typical assuompin
remarks and directions for future work. weather forecasting, and thus the first two statistical mme

give a complete description of the uncertainty.
Il. WIND FORECAST ANDUNCERTAINTY ESTIMATION The initial Nenemember ensemble fie|ﬁ§o = x;(to), i €
UsSING WRF {1... Nens}, is sampled from\ (zyanr, V):

In this section, we describe the procedures used to forecast, 1 )
the wind speed using WRF. The uncertainty in the wind speed: — Zvann + V&, & ~ N(0,I), i € {1...Nengt , (1)
is estimated by using an ensemble approach. We desciifjesre ¢ — _ Vis

. . e X is the correlation matrix and/;; is
in detail the ensemble initialization and restarting prhoes th . fVHV'jjbI' This | walent t wrbing th
required in an operational framework. e variance of variablé This is equivalent to perturbing the

NARR field with A (0, V). That is,2; = zyans + N (0, V).
In what follows, we describe the procedure used to estimate
A. Numerical Weather Prediction the correlation matrix.

The Weather Research and Forecasting model [17] is a state2) Estimation of the Correlation Matrixtn weather models
of-the-art numerical weather prediction system desigreed the correlation structure typically is localized in spatkere-
serve both operational forecasting and atmospheric resedfiore, in creating the initial ensemble one needs to estimate
needs. WRF is the result of a multi-agency and universitiie spatial scales associated with each variable. To obtain
effort to build a highly parallelizable code that can runassr these spatial scales, we build correlation matrices of the
scales ranging from large-eddy to global simulations. WRBrecast errors using the WRF model. These forecast errors
has a comprehensive description of the atmospheric physice estimated by using the method formally known as the
that includes cloud parameterization, land-surface nsmdeNational Meteorological Center (NMC) method, now NCEP
atmosphere-ocean coupling, and broad radiation modeks. Th4], [8], [4], which is based on starting several simulago
terrain resolution can go up to 30 seconds of a degree, whitaggered in time in such a way that, at any time, two forscast
corresponds to less thankm?. are available. In particular, we run a month of day-long

To initialize the numerical weather prediction simulagpn simulations started every twelve hours so that every twelve
we use reanalyzed fields. In particular, we use the Norttours we have two forecasts, one started one day before and
American Regional Reanalysis (NARR) data set that covesee started half-a-day before.
the North American continent (160W-20W; 10N-80N) with a The differences between two staggered simulations is de-
resolution of 10 minutes of a degree, 29 pressure levels0fL00Goted asd;; € RN *(2x30days) - that s, the difference at the
100 hPa, excluding the surface) every three hours from 1979 point in space between thg" pair of forecasts, where
until present. N is the number of points in space multiplied by the number



of variables of interest. We can then defineas thei*" row, statistics may diverge from the true statistics. Thergftre

each of which correspond to the deviations for a single poiatror levels need to be re-estimated before each initiédiza

in space. Therefore, the covariance and correlation nestric One sensible approach used to correct the ensemble statis-
can be approximated by tics is as follows. Consider the reanalyzed field,zz as

the true state, for computing corrections purposes onlg, an

€0 €0 | €1°€0 | | En-€0 : . . o
P P I P, require that this reanalyzed solution be on average within
Vi ~dd” = o " one standard deviation as given by the ensemble spread. This
approach corresponds to finding a factprthat inflates the
€0 "€n | €1 "€En | " €n " €n

. _ . _ ~ensemble spread about its expectation. Let us considen agai
Calculating and storing the entire covariance matrix affe ensembler;—; .. € RM and the reanalyzed solution

computationally intractable. Consequently, we describe t;, = penote byz = NLZM;S@ the sample expectation
R i

correlation distance at each vertical level and for eactabite 4 byo; = /S%,;. j € {1... M}, the standard deviation,
by two parameters representing the East-West and NortthSou B Nens(x_ 7)(z: — 7)T is the sample
[ [

s . - ) . Where 8?2 = L ;
dlrecyons. This can b(_e efficiently est|mate_d by c_ompu_tmg-s covariance esjiliernﬁaltionz.iTlhen, we have
eral times the correlation along a ray cast into this velrteael
in the East-West direction, fitting a Gaussian to the central , |Zxarr — T
peak, and then averaging among several rays. This approa¢h~ "% (1’"”” (meanUaVvT (7) ’4)) , (3)
captures the difference between East-West and North-South
winds due to the Coriolis effect and the earth rotation, atdhere U, V, and T' are the the wind field components
also faster and larger scale winds in the upper atmosphed8d the temperature, that is, the ensemble variables under
However, we assume that correlations and winds are rougBRnsideration. For this comparison, we consider only tres fir
similar in nature across the continental U.S. This procsssfive layers, which include grid points located below 300 m.
repeated in the vertical direction such that our resultsatse The new ensemble is then inflated by
correlated level to level. )

To create the perturbations from these length scales, vee tak 2 =T+ (2 =), i €{1... Nens} . (4)

a normaII_y d|§tr|but_ed noisy f|¢|d and apply Gaussian f.lltetlshe factor is bounded between one, because the model error
in each direction with appropriate length scales to obta t.

. is underestimated in our case, and four to avoid large jumps i
same effect as in (1). the solution and destabilize the NWP model. Experimentall
3) Ensemble Propagation through the WRF Modé&he - =XP naty

initial distribution is evolved through the NWP model dynamhowever, we noticed thay = 2, which confm_’ns that_ t.hls
: . . ) . __approach tends to underestimate the uncertainty. Thisigact
ics. The resulting trajectories can then be assembled trobt

S : L not unexpected because the model error is not considered.
an approximation of the forecast covariance matrix:

I;?F :MtoﬂtF (Ifo) +ni(t)7 i€ {1"'Nen5}’ (2)
where z° ~ N (Zwarn, V), m: ~ N(0,Q), and

MtOHtF(Z.) represents the evolution of the initial condition The unit commitment problem consists in finding a cost-
through the WRF model from tim&, to time t. The initial OPtimal plan of on/off states and power levels for a set of
condition is perturbed by the additive noigethat accounts distributed power generators. This problem normally isedl
for the various error sources during the model evolution. AR the system operator each time new price informationesriv
analysis of the covariance propagation through the modelff@M the generator owners (market biding). Depending on
given in [21]. the hierarchical structure used (centralized or decen¢d),

In this study, we assume that the numerical model (WRﬁjaveral variants of the UC problem can be established. Here,
is perfect thai is;) = 0, and given the exact real initial W& adopt the traditional centralized approach, in which the

conditions, the model produces error-free forecasts. &g | system operator has control over the whole .set of generators
prediction windows, this is a strong assumption. In thigigtu 1€ UC problem uses a forecast of uncertain factors such as
however, we restrict the forecast windows to no longer thae l0ad or, in our case, of wind power generation. Since the
one day ahead, thus making this assumption reasonable. forecast is not perfect or disturbances might arise, anggner
4) Accounting for Error Underestimatiorin an operational dispatch problemis solved in closed-loop to correct theguow

setting, observations become available periodically e '€Vels and satisfy the demands.
assimilated in the atmospheric state. In order to account fo
the new information, the ensemble needs to be recentered on C .

, ; A. Deterministic Formulation
the new reanalyzed field. In our example, we consider 12-hour
windows between restarts. This simple adjustment corredpo  Many different mathematical formulations of the UC prob-
to a correction in the ensemble expectation. However, them exist. They differ mostly in the constraints used to et
pointwise error estimates given by the ensemble varianttee dynamic performance of the generators (e.g., rampsjmit
may be over- or underestimated because of simulation errorsn the assumed cost models [16]. The UC formulation con-
accumulated along the model trajectory due to uncertaia daidered here is based on the mixed-integer linear progragmi

and incomplete NWP physics. In other words, the ensemiMILP) formulation of Carrion and Arroyo [3]. This has the

g
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general form satisfy the ramp-up limits

min Z Z &+l ety (5a) Dik < Djik—1 + RU;vj -1+ SU; (vjk — vjr—1)
PikoPikVik SeN keT +Pj(1—vj1), jEN, k€T, (10)
st.Y pixt+ >, Epyi"’l=Di k€T (5b) The shutdown and ramp-down limits are
N I N wina D < pix+RDjv;i+SD (1/ v )
ik—1 < Dik iVj,k i(Vik—1 — Vjk
Zp7k+ Z E wznd >Dk+Rk,k€T j,k—1 J _J7 J'7 J
JeN JeN s —i—Pj(l — I/j71€_1), jeN, keT.(11)
(5¢) Here,RD;, RU;, SD;, andSU; are the ramp-down, ramp-up,
(6) — (13). shutdown ramp, and startup ramp limits of upitespectively.
The minimum up time constraints are

The sets7 := {1.T}, N := {1.N}, and Nyina =

G

{1..Nyina} represent the time periods, thermal units, and N .
wind generators, respectively. The demand at each timegberi kz_:(l vik) =0, jEN (122)
k is denoted byD; while the reserve requirement iBy. kjrlle,__l
The power output of the thermal unjt at time & is given - .

. : ) > (Vig —Vigp—1),
by the continuous variablg; , while the expected value of Zk Vi 2 UTj (Vi = vin-1), €N
the power output of the wind unif at time k is given by k=G +1,....,T—UT; +1 (12b)

the fixed parameteE[p ““”d] The continuous variablg;

represents the maximum power output of the thermal unit L

4 at time k. This variable is introduced in order to model Z (’/77
the spinning reserve requirements which are given by the n=r
differencesp; , — p; x- The units of all the power outputs are k=T-UT;+2,...,T, (12c)
MW. The on/off status of thermal unjt at time & is given where U7} are the minimum up time limits and?; =

n— Wik —vjr-1)) =0, jEN,

by the binary variables; . min(T, (UT; — UY)v; ) is the number of periods unjtmust
The production cost for each thermal unit is approximatese initially ON. The initial state of unif is denoted by, ¢
by using the linear model [2] and is a fixed parameter. The minimum down time constraints
are formulated as
C;?,k:ajuj_’k-l-bjpj_’k, JEN, keT, (6)
wherea; and b; are cost coefficients. To model the startup ZVM =0,jeN (132)
costcy, we use a staircase cost of the form k=1

k+DT;—1

Z (1= vjn) > DT (vjik—1 —vjk), 5 EN,

. cold
Kt {ccj if ¢ > 159+ DT} jeN,t=1,.,ND;.

77\ he otherwise ’ n=k
k=L;+1,....,T - DT; +1 (13b)

where K is the cost of intervat of the staircase costy D; T

is the number of intervals of the staircase cost, an,dand Z (1= vjn — Wjh1 —vjx)) >0, jEN,

he; are cost coefficients. This leads to the following set of =

inequality constraints: k=T-DT;+2,...,T, (13¢)
s gt : where DT; denote the minimum down-time limits and
Cik = Vik = D Vikn | L; =min(T, (DT, — 59)(1 - v;,0)) is the number of periods

j eJ\/j keT, t=1,..ND,, (7a) unit 7 must be initially OFF.

ik =2 0,jeN, keT. (7b) As noted in [3], the above UC formulation requires a
significantly smaller number of binary variables compared t
traditional formulations. For instance, in all the formidas
C?,k > ¢ (V%,ﬁl _Vj_’k), jeN, keT, (8a) reviewed in [6], an extra set of variables is required to
identify the units that arestarted at the beginning of each

The formulation of the shutdown cost is given by

d .

G = 0 €N, keT, (8b) period. The proposed formulation also yields an accurate
whereC; is the shutdown cost of unjt The power output of representation of ramping limits and individual contribas
each unit at each period must satisfy the bounds to the spinning reserve requirements. Modeling the ramitdim

in a consistent manner is particularly critical as this dates

Puvix < pix<DjmJje€N,keT, (9a) the responsiveness of the thermal units in the presencedf sh

0 < pp<Pivjr, jeN, keT, (9b) term qu_ctuations of _the load and_ wind power [19]. Note that it
7 is possible to use this model to simulate the performandeeof t
whereP; and P; are the maximum and minimum capacitiegnergy dispatch problem by fixing the commitment variables
of unit j, respectively. The thermal power outputs must alsg .



B. Stochastic Programming Formulation C. Closed-Loop Implementation

We extend the previous deterministic formulation by con- TO simulate the closed-loop performance of the power
sidering corrective actions on the power outputs of thentiaér Systém, we considermalling-shrinkinghorizon approach. The
generators to account for the uncertainty in the wind powgfarting rolling time is reset to one each time new priceinfo
outputs. The problem can be cast as a two-stage stochaSt{ion is obtained. This period is assumed tdbe 24 hours.
programming problem similar to the ones proposed in [2f\t the starting rolling time, we assume that the wind power
[20], [18]. The first stage decision variables are the currefprecast becomes available from WRF for the next 24 hours.
thermal power outputs; 1, 7, and the commitment profiles At this point, the stochastic unit commltme‘nzproblgirpdﬁts{‘sgll
over the entire planning horizom; .. The power outputs are PY using the current wind power outpy$7® «— p; ;"
nonanticipatory (here and now) because it is assumed tRad the future forecasis!¢, k = £+ 1,...,T where/ is

the current wind power outputs?i*® are known and given the current time step. The solution of this problem gives the
wind,true 1o ftormulate the second stage, we consid&emmitment profiles/; ; over the 24-hour rolling horizon. At

by p;

7,1 : . . . . .
multiple realizations of the wind power Outpuﬁﬂd -and each step |n3|d(=T the rolling horizén= 2, ..., T, the ho_r|zon is
we define scenario-dependent thermal power OUtpYtS; shrunk by one time step < T — ¢ and the stochastic energy

" qndispatch is solved over the remaining horizon with the new tr

and p, ;, with & > 1 (wait and see). Note that we do"" : _
not define second-stage scenario-dependent commitment WAfnd power but the same forecast information. Each of these
kalng horizon problems gives the current power outputs

ables because we wish to keep the problem computation£ J i . X .
tractable. The second-stage power outputs implicitly $ieu Pi.¢ andpM. "’Ft cgrrent timer. Note that this requires _sh@ng
the closed-loop response of the energy dispatch proble. -me nonanticipativity constraints to the correspondinigiah

formulation of the stochastic optimization problem is givgy times of the shrinking problems. In addition, it is neceggar
shift the initial state of the thermal units and the correxfing
. 1 N
L D2 D it t

minimum up- and down-time paramete®§ and L.
Ds,j,k>Ps,j,k:Vik . .
! s€S \JEN keT D. Inference Analysis

_ (142) In the above stochastic formulation, the wind power outputs
s.t. Zps,j,k-i- Z p?f}’}f =Dy, s€ S, k€T (14b) are assumed to have a probability distributiBn In most
JEN J€Nwind stochastic optimization studies this distribution is &ssd
Zﬁs,j,k + Z Pé’ffkd >Dy+ Ry, s€S,keT to _be known. As seen in Spction I, qbtaining this.distri—
bution is part of the modeling task. Since many different
(14c) forecast models (autoregressive, ANN, physics based) can
(14d) be used to construct the error distribution, there is not a
unique distribution. From a practical point of view, what we

jGN jerind

Psj1=D1,j1SES, jEN

Psj1=Prj18€S, jeN (14e) expect from a distribution is that it is able to encapsulag t
6)-(11), seS actual realizations of wind power and it has tight confidence
(12)— (13). intervals. The encapsulation property ensures robustogss

the solution (it satisfies the load in each possible scepario
The ramp and power limit constraints are defined over eashile tightness ensures that the cost penalty incurredh(wit
scenarios € S where we substitutg; .. < p ;, andp, , < respect to the perfect information cost) is not too strong. A
Ps.j.- The nonanticipativity constraints for the power outputexplained in Section Il, we model the wind power distribatio
in the first time step are given by equations (14d) and (14&y propagating an assumed Gaussian distribution of thialinit
For the known wind power outputs we 3@’5’{3‘1 <—p§‘f}”d’”“€. state conditions through the WRF model. Because of the
Note that if the stochastic formulation is able to captureomplexity of the model, we are limited to a single batch of a
the uncertainty of the wind power accurately, the reservew (less than a hundred) weather samples. From a stochastic
requirements can be reduced to less conservative level&nor eoptimization point of view, this is an issue because we ate no
be removed. In other words, the reserves already incomorablving the problem with the full distribution. Neverthste
some robustness into the UC problem. We have decidedwe want to at least get an idea of how sensitive the costs are
include the reserves in order to analyze the interplay betweto changes in the random information. In addition, we might
the explicit robustness introduced by the reserves and thant to compute the cost variance or confidence intervals.
implicit robustness introduced by the stochastic formatat Performing inference analysis through sampling techrique
This approach has been proposed in [15] and will be usgd would require resampling many times the initial state
in Section IV to analyze the effect of increasing levels distribution and propagating each sample through the WRF
penetration that can be achieved through the stochastic btodel. This approach is not practical from a computational
formulation. Load uncertainty has not been considered jpoint of view. To avoid this limitation, we next present a
this study in order to isolate the effects of wind poweneuristic resampling technique.
uncertainty. As in the deterministic formulation, one caivs 1) Weighted Average Samplingp create new wind speed
a closed-loogstochasticenergy dispatch problem by fixing thetime series from the existing WRF realizations, we express a
commitment actions. new realization as a weighted average of the available ones.



Suppose the WRF model igt) = M(t,z(0)), wherexz(t) is and variance can be used to construct confidence intervals
the state vector at time If we are givenNg samplesz; and of the lower bound. To estimate the upper bound, we pick
we can writex(0) = 3, s w;z;(0), the propagation of(0) a given value for the first-stage variabl¢sand generate a

is x(t) = M(t,z(0)) = M(t, > c s wjz;(0)). Assuming the new set ofj = 1,..., M batches of data. We then evaluate
variance of the samples is small, we can wiit¢0) = z(0)+ (15), leading tof7,(z). Note that each evaluation involves
€;(0). We can justify the computation of weighted averages diie solution of the second-stage problem (16). As before,
the time series because we have the meaVy, vy = ﬁz;‘il fzjvs and variance

M ([ 2
(M) = x5 L (Fey = Uner)

IV. I NTEGRATIVE STUDY

M(t, 2(0)) + ij%(t,@(o))ej(o) In this section we integrate the wind speed forecasts pro-
. O ' duced by WRF by following the procedure described in

x(t)

M| t,z(0) + Z w;e;(0)

Q

- oM Section Il with the stochastic unit commitment/energy disp
= ij (M(t,x(o)) + W(t’ I(O))ﬁj(o)) formulations described in Section IlI.
J
~ ij/\/l(t,:‘c(o) + ej(())) A. Wind Forecast and Uncertainty Quantification
J We begin with a description of the weather model setup and
= Z w;x;(t). illustrate its performance in a parallel environment thatios
J a real operational setup. We use the WRF model to forecast the

In other words, the weighted average of the time series a:ppr?ﬁvind Speedin a specifi_c region that COVETS the state O.f IBino_
imates, to first order, the nonlinear propagation of WeightéNe setup a cpmputaﬂonal nested domain structure including
samples of the initial conditions. Inspired by kernel depsia h|.g.h-resolut|0r.1 sector that covers the target area and- two
estimation, the weights are chosen to be Gaussian near the f ditional domains of larger coverage but lower resolution

vectors in the standard basis on a hyperpl@]ees wy =1 The parent domains supply the bo_undary condi_tions for the
in the w space. nested ones, and the largest domain has prescribed boundary

2) Computation of Confidence Intervalthe two-stage conditions from coarser simulations. This setup is illatgd in
stochastic UC problem with fixed binary variables can IO.Feigure 1. A similar setup with one coarse domain is described

E[Q(z,£)] is the second-stage cost. We assume that the———-~—>—
probability distributiornP of £ has finite support; that ig,has a 126 x 121

w
ol

expressed in the following abstract form : in [21].
min ¢’z + Q(z), s.t. Az = b. (15)
>0 45f
Grid/Size
Here, © are the first-stage decision variables, a@¢r) = #1 - 32 km? 40\
130 x 60

° Latitude N

w
(=]

, AR
N =T

finite number of scenariof, ..., {x } with probabilitiesp;, € #3 -2 km”

1). Consequently, we can wri@(z) = &+ S0, Q(a, &) 202 X 232
(©,1). 9 v T TR k=1 Sk -120  -110  -100 _ -90  -80
where ° Longitude W

Q(g@@) _ mi>% quk, StTz+Wyp =6, k=1,.., K. Fig. 1. Size and spatial resolution of the computational @iom
Yr>

o . (16) To simulate realistic conditions, we generate six ensemble
Here,y;, are the second-stage decision variables,Grate the data sets, each containing the predicted wind speed fooii
realizations of the wind power outputk. is a very large num- regjion corresponding to domain # 3 (the innermost) in Figure
ber so it is impractical to solve the stochastic problem #8yac 1. Each ensemble haé.ns = 30 members. The data is sampled
Therefore, given a fixed number of realizatioNs: << K, every 10 minutes, and each ensemble is evolved one day ahead.

we solve the approximate problem, The starting time of the experimetytcorresponds to Junié®,
1 Ns 2006, 6:00 PM CT (local time), with each data set restarted

min ¢’z + — Z Q(z, &), s.t.Ax =b. (17) from the reanalyzed solution at timig+ (k — 1) x (12 hourg
=20 Ns k=1 with £ = 1,...,6. In other words, each data set is started at

We seek to estimate lower and upper bounds of the trfft¢ revalidation time with 12-hour increments.

optimal solutionv* (using the entire set ok realizations) and 1) Validation Using Wind and Temperature Data Measure-
their corresponding confidence intervals. A lower bound cdRénts: We validate the WRF model against observations
be estimated generating= 1, ..., M batches, each of siz¥g at s_everal Weather stations th_roughout III|n0|s._The \A@rath
and solve (17) for each batch. If we denotaﬁé,s the optimal station observations were obtalr_led from the Natl_onal Gln:na_
cost of each SAA problem, we can estimate the lower bouR_f‘ta Center (NCDC), and their locations are illustrated in

asLy. = & S 47 The sample variance estimator idigure 2.b. _
o M 2'7*1 Ns P In Figure 3 we show the wind speettZo) and temperature

. 2
. M A~
given by s7 (M) = 3747 22,2, (vas - LNS-,M) - The mean (43¢) predictions and measurements for Peru and Chicago,



IL, identified as rotated triangles in Figure 2.b. Each ertldem 2) Validation at Wind Farm Locations in lllinois:We
evolves for 24 hours and new ones are started every 12 hoyrgsent validation results at 12 active wind-farms in tlagesof
therefore, the last half of each forecast overlaps with aemdilinois. Their locations are displayed in Figure 2. Cuittgn
recent one. In our illustrations we show the most recentt®suhe power produced by wind turbines depends on the wind
on top. speed at elevations of about 40-120 meters. The wind speed
fields at these heights can be extracted from WRF. Unfortu-
nately, the NCDC data available for validation is reportatyo

at 10 meters. Obtaining wind speed data at higher altitudes
requires access to proprietary databases of operatiomal wi
farms. Consequently, we provide validation results onl{Gt
meters.

The wind speed fields at 10 and 100 meters above the
ground for three consecutive days of June 2006 are presented
in Figures 4 and 5, respectively. The order of the windows
goes from left to right and coincide with the wind-farm

° Latitude N
° Latitude N

-92 -91 -90 ,ég\ -88 -87 -92 -91 -90 -89 -88 -87 . . . . .
* Longitude W ° Longitude W location numbering shown in Figure 2. From Figure 4, we
a) Wind farm location b) Weather stations  note that the WRF realizations are able to capture the genera

trends of the actual observations. In addition, they are abl
to encapsulate the observations. Note, however, that thed wi
speed is relatively low at this height. The maximum average i
We remark that the wind speed measurements obtained frgrfaund 6-7 meters per second. From Figure 5 we see that the
NCDC are given in miles per hour rounded to the nearggind speeds increase significantly at 100 meters, reaching a
integer. Doing so has the unfortunate effect of diminishingiaximum average of around 10 meters per second. Note also
the wind variability and yielding more pessimistic thanlregnat the uncertainty levels increase at this height as dtresu
validation results. The temperature measurements are aige larger range and variability. This increase is also etqze

rounded, but this effect is less visible. In this test casgecause most of the wind speed data assimilated in WRF is
however, the temperature is relatively easier to predi@ne&s near ground level.

the wind typically has a wider variability and is much more
difficult to predict accurately. This point is enforced byeth
correlogram for the temperature and wind speed at Peru,
shown in Figure 6. The uncertainty intervals as given by WR
capture the trends very well, with few exceptions. Simile
results are obtained at the other weather stations. Thegkge
show that WRF can be used to make accurate wind predictic
and provide confidence intervals.

Fig. 2. Windmill farms and weather station (triangles) kimas in lllinois.
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Wind Speed [m/s]
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Local time from June 1% [hours] Local time from June 1% [hours]

Wind speed, Peru (10m) Wwind speed, Chicago (10m ° * w e o a7 R

Wind Speed [m/s]

Time [hr] Time [hr] Time [hr]
2 Fig. 4. Wind speed realizations for 12 wind farm locationsllimois at

10 m and observations (dots) at nearest meteorologicabrssatVertical lines
represent beginning of day (12:00 AM).

Temperature [C]
Temperature [C]

In Figure 7 we show the spatial correlations of the wind
speed for wind farm #8 on June 5, 1:50 AM, as inferred from
PP et anestpo PP Gt the 30-member WRF ensemble simulation. In this analysis, we
Temp, Peru (grnd) Temp, Chicago (grnd) have observed that the wind speed is highly correlated over
Fig. 3. Wind speed+20) and temperature{30) predictions and mea- & wide geographlcal reglon_ and that it has a nontrl_V|aI a_pan
surements (o) for Peru and Chicago, IL. The vertical dashmas Idenote the structure. This observation is confirmed by comparing Fegur
beginning of a new 24-hour prediction window; differentasl are used to g gnd 2. Here. we can see that the wind speed realizations
indicate ensembles started at different times. . ’
for wind farms #2, 3, 4, and 8 are strongly correlated, as




of each individual member. This approach yields a highly
scalable solution.

The simulations were performed on the Jazz Linux cluster
at Argonne National laboratory. Jazz has 350 compute nodes,
each with a 2.4 GHz Pentium Xeon with 1.5 GB of RAM. The
cluster uses Myrinet 2000 and Ethernet for interconnect and
has 20 TB of on-line storage in PVFS and GFS file systems.
Our actual running times for a single 24-hour job on Jazz are
illustrated in Figure 8. We note that solution times can \ayry
a factor of 2 throughout the day. Consequently, to make this
run a one hour of real time, one would need on the order of 500
CPUs or cores of a similar power. Additional computational
power may be required to compensate for increasing cost of
disk access.

Wwind Speed [m/s]  Wind Speed [m/s]  Wind Speed [m/s]

Wind Speed [m/s]

o0 2;1 B 48 72 0 24 ‘ 48 72 0 24 48‘ ".72
Time [hr] Time [hr] Time [hr]
CPUs | Time 107}
Fig. 5. Wind speed realizations for 12 wind farm locationdllinois at 100 [hr] B
m. Vertical lines represent beginning of day (12:00 AM). 2 50 o
£

8 28 | = .

16 17 —=—Scalability on Jazz ‘o
predicted by the correlation mapping. The correlationrimfa- 32 10 7 o7tinear Scalabiliy
tion is highly valuable, because it can augment the temporal w0l o .
uncertainty analysis by identifying the locations that lécely 0 cPUS 1

to experience a similar behavior. This can be used, formesta Fig. 8.  Scalability of WRF on the computer cluster Jazz for Iirs
to identify faulty sensors at certain locations or to aggteg (extrapolation based on 2-hour runs).
the performance of multiple turbines in a consistent manner

o T B. Economic Study Unit Commitment/Energy Dispatch

o8 e a2 oo Because of the lack of detailed design data of thermal and
e ss  Wind power units in the open literature, we have construated
os  artificial simulation study. We first describe the thermatlan
es wind power assumptions used and then discuss our results
°7  from the simulation.
065 1) Power System Descriptionthe thermal power system
S 2 e % G e o specifications used in this work are based on those reported
teotierl in [3]. The system contains a total of 10 thermal generators
Fig. 6. Correlogram for the wind and 719 7. The spatial correlation for with a total installed capacity of 1662 MW. The peak demand
temperature measurements at Per§® wind field for wind farm #8 on 5 1326 Mw. The ramp limits of the units are not reported,
IL. ne 5 1:50 AM, denoted by “X. )
The circle markers denote the otherSO We have assumed them to be 50% of the corresponding
wind farms in lllinois. maximum capacity. The reserve requirements are assumed to
be 10% of the demand. To simulate increasing level of wind
3) Implementation Consideration$/RF is an open-source power adoption, we increase the number of wind turbines at
weather and climate model available to the research comnagach of the 12 wind farm locations in lllinois.
nity. In this study we used the latest version available at th 2) Results:To generate wind power forecasts, we propagate
time of preparing this manuscript; that is, version 3.1 [1f] the real wind speed observations and the realizations from
what follows we provide some implementation consideraioWRF at a height ofLO metersthrough a typical wind power
arising during the execution of WRF in an operational sgttincurve with a maximum capacity of 1.5 MW. The nominal
The ensemble approach taken for estimating the uncertaiotyve has a cut-in speed of 3 meters per second and reaches
in the weather system is highly parallelizable because edtle rated capacity at 12 meters per second. The wind speed
scenario evolves independently through WRF, once thainitobservations, forecast and ensembles used are summarized
ensemble has been generated. The most expensive conpurigure 4. As previously mentioned, we used the height
tational element is the evolution of each member througti 10 meters because the NCDC data used for validation
the WRF system. We therefore consider a two-level paralisl only reported at this level. In addition, most wind power
implementation scheme. The first level is a coarse-grainddta is proprietary and difficult to obtain. As expected, the
task decomposition represented by each individual membe&md speeds are relatively low at this level, thus leading to
A secondary finer-grain level consists in the parallel@mati small power outputs. Instead of using the wind speed WRF

° Latitude N




forecasts at 100 meters, we have kept the 10 meters WRigures 10-12. In Figure 10, we present the optimal commit-
forecasts and observations and mapped these using a shifiteht profiles for the closed-loop optimizer and for the petrfe
power curve obtained by displacing the nominal cut-in spe@dformation problem. As can be seen, the profiles are similar
from 3 to 2 meters per second. With this, the rated capacitybat the generators tend to be ON more with the stochastic
reached at around 11 meters per second. This strategy dllowelicies. We note that the optimal cost of the stochastic
more realistic validation results for wind power comparesitrategy over three days of operation is only about 1% larger
to linear interpolation of the wind speed observations. Thkan with the perfect information strategy. In Figure 11, we
resulting artificial wind power realizations and obsemwa$i present the policies for the thermal power levels. We notice
are presented in Figure 9. The order of the windows go#®t the sensitivity of the power levels of some units to the
from left to right and coincides with the wind farm locationuncertainty of the wind power is very small. Generators #2
numbering shown in Figure 2. The wind power distributioand #5 are the most sensitive, while generators #3 and #4
is clearly affected by the nonlinear structure of the powexhibit no sensitivity. We have found that the sensitivaydls
curve. The WREF realizations are able to encapsulate thalactiepend strongly on the design characteristics and prictgeof
power observations. The largest differences are observedganerators.

the beginning of the third day. Unfortunately, the rounding We also performed an inference analysis using the weight-
of the NCDC wind speed data significantly increases tlieg sampling strategy of Section 11I-D1 for the first day of
errors when mapped through he power curve. Neverthelesspperation using/ = 30 different batches. The upper bound
general, the overall trends are captured fairly accuraidly mean was found to b&y, s = $474,064 with variance
emphasize that the uncertainty structure of the wind powe} (M) = 1,082%%. The lower bound mean was found to be
forecasts strongly depends on the particular charadterisf Ly, n = $474,317 with variances? (M) = 1,656$2. Both

the installed system. variances are less than25% of the mean cost. This value
indicates that 30 WRF realizations are sufficient to esémat
the optimal cost. We have also found that updating the WRF
forecast every 12 hours instead of every 24 hours does not
bring important economic benefits. The explanation resits w
the forecast trends presented Figure 3. Note that the fet®eca
are not improved significantly at the middle of the day, ppegha
because measurements assimilated during the day are not as
informative as those assimilated during night, where thedwi
currents tend to be stronger.

In Figure 12 we present the profiles of total aggregated
demand, thermal power, and wind power. The thin gray lines
represent the scenarios foreseen by the stochastic optilaiz
the beginning of each day. As can be seen, the realizatiens ar
able to encapsulate the actual closed-loop profiles (solés)
during the first two days. As a result, the optimizer is always
able to satisfy the load, even for an adoption leveR@f. In
the third day, however, we see a significant mismatch between
the forecasted wind power and the realized one in the first 12
Fig. 9. Wind power realizations for 12 wind farm locations lilnois at hours of operation. This directly translates to a mismaich i
10 m and observations (dots) at nearest meteorologicadrstatvertical lines  the planned closed-loop behavior of the thermal power ¢evel
represent beginning of day (12:00 am). In this case, the reserves are sufficient to satisfy the load.

Nevertheless, this result is important to illustrate thateling

We have run the closed-loop UC/ED system assumingtlze probability distribution in an adequate manner is aaiti
rolling horizon and a forecast frequency of 24 hours. ThEhis effect could potentially be ameliorated by inflating th
energy dispatch problem runs every hour. A total of 3iditial conditions of the WRF ensembles. However, this etffe
WRF realizations are used to solve the stochastic problecannot be predicte@ priori, and computational limitations
The resulting MILP problems are implemented in AMPLpreclude running the WRF model more frequently to capture
and are solved with the CBC solver from the COIN-ORhis mismatch. This situation suggests that a higher freque
repository. The MILP contains 38,651 variables from whicforecaster (e.g., autoregressive model) or an artificishuae
240 are binary, 783 equality constraints, and 40,747 iniégua corrector should be added to the system. How to connect this
constraints. CBC is used with its default algorithm settibgt short-term forecaster with WRF is still not clear.
in multi-thread mode with four threads. The average sofutio We found that a purely deterministic optimizer (using only
time for the full UC problem in a quad-core Intel processdhe WRF forecast mean) is not able to sustain adoption levels
running Linux is about 9 minutes in cold-start mode. Thef more than10% even with the allocated reserves. We also
solution time of the energy dispatch problem is less than b®served that increasing the adoption levels increasestae
seconds. up and shutdown costs, but these are negligible (on the order

The results for the 20% penetration study are presentedoh$10,000) with respect to the total production costs.
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gray lines are forecasted profiles.
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Fig. 10. Closed-loop commitment profiles for thermal un@slid thin line
is optimal profile (with perfect information); solid thicknk is stochastic UC
solution.

though the high computational cost attached to such freaquen
updates. Our study illustrates a real operational settmgl,
points to several issues and limitations that are not ptasen
idealized experiments using artificial uncertainty infation.

Our inference strategy shows that a moderate (N=30) nhumber
of WRF realizations is sufficient to produce a good estimate
of the optimal cost.

As future work, we are interested in developing techniques
to generate forecasts at a higher resolution. In additiom, w
are interesting in generating wind-power forecast modgls b
fusing WRF wind speed forecasts and operational wind-power
data. In addition, we are interested in exploring real-topé-
mization strategies to reduce the on-line computationadsi.

We are also interested in exploring the interplay betweeardwi
power uncertainty and the power system design and price
characteristics. We will extend our formulation to conside
detailed network constraints where the effects of wind powe
are more pronounced.
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V. CONCLUSIONS ANDFUTURE WORK

We presented a computational framework for the integra- ACKNOWLEDGMENTS
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ture. We have used the uncertainty information in a stoahast
unit commitment formulation to analyze the impacts of wind
power uncertainty on the system’s economic performance. In
addition, we have developed a weighting-average resamplintl
strategy that avoids expensive WRF simulations to perform
inference analysis. Our numerical experiments indicasd th [2]
it is relatively costly to generate forecast and unceraint
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